


A-Core Container

Energy Storage BMS Management System Equipment

12.8V6Ah

Nominal voltage (V):12.8
Nominal capacity (ah):6
Rated energy (WH):76.8
Maximum charging voltage (V):14.6
Maximum charging current (a):6
Floating charge voltage (V):13.6~13.8
Maximum continuous discharge current (a):10
Maximum peak discharge current @10 seconds (a):20
Maximum load power (W):100
Discharge cut-off voltage (V):10.8
Charging temperature (°C):0~+50
Discharge temperature (°C): -20~+60
Working humidity: <95% R.H (non condensing)
Number of cycles (25 °C, 0.5c, 100%dod): >2000
Cell combination mode: 32700-4s1p
Terminal specification: T2 (6.3mm)
Protection grade: IP65
Overall dimension (mm):90*70*107mm
Reference weight (kg):0.7
Certification: un38.3/msds

Overview

What is a battery management system (BMS)?

Battery management systems (BMSs) are discussed in depth, as are their applications in EVs and renewable energy storage systems. This review covered topics ranging from voltage and current monitoring to the estimation of charge and discharge, protection, equalization of cells, thermal management, and actuation of stored battery data.

What is a nuvation energy battery management system?

Designed for battery stacks that will be certified to UL 1973 and energy storage systems being certified to UL 9540, this industrial-grade BMS is used by energy storage system providers worldwide. Nuvation Energy battery management systems are high-reliability electrical controls that have been continuously improved upon for over a decade.

How does BMS impact battery storage technology?

BMS challenges Battery Storage Technology: Fast charging can lead to high current flow, which can cause health degradation and ultimately shorten battery life, impacting overall performance. Small batteries can be combined in series and parallel configurations to solve this issue.

What are the applications of battery management systems?

In general, the applications of battery management systems span across several industries and technologies, as shown in Fig. 28, with the primary objective of improving battery performance, ensuring safety, and prolonging battery lifespan in different environments . Fig. 28. Different applications of BMS. 5. BMS challenges and recommendations.

What is EMS & BMS?

In large-scale deployments, EMS enables predictive maintenance and grid support, crucial for renewable integration. These components form an

interdependent trinity. The BMS provides real-time battery status to the EMS, which processes this data to make decisions and sends instructions to the PCS for execution.

What is a BMS & how does it work?

The BMS is the brain of the battery pack in a BESS, responsible for monitoring and protecting individual cells to prevent damage and extend lifespan. It measures critical parameters such as voltage, current, and temperature, while calculating the State of Charge (SOC) and State of Health (SOH).

Energy Storage BMS Management System Equipment

Contact Us

For catalog requests, pricing, or partnerships, please visit:
<https://a-core.pl>